/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Simple Encoder // ============== // // This is an example of a simple encoder loop. It takes an input file in // YV12 format, passes it through the encoder, and writes the compressed // frames to disk in IVF format. Other decoder examples build upon this // one. // // The details of the IVF format have been elided from this example for // simplicity of presentation, as IVF files will not generally be used by // your application. In general, an IVF file consists of a file header, // followed by a variable number of frames. Each frame consists of a frame // header followed by a variable length payload. The length of the payload // is specified in the first four bytes of the frame header. The payload is // the raw compressed data. // // Standard Includes // ----------------- // For encoders, you only have to include `vpx_encoder.h` and then any // header files for the specific codecs you use. In this case, we're using // vp8. // // Getting The Default Configuration // --------------------------------- // Encoders have the notion of "usage profiles." For example, an encoder // may want to publish default configurations for both a video // conferencing application and a best quality offline encoder. These // obviously have very different default settings. Consult the // documentation for your codec to see if it provides any default // configurations. All codecs provide a default configuration, number 0, // which is valid for material in the vacinity of QCIF/QVGA. // // Updating The Configuration // --------------------------------- // Almost all applications will want to update the default configuration // with settings specific to their usage. Here we set the width and height // of the video file to that specified on the command line. We also scale // the default bitrate based on the ratio between the default resolution // and the resolution specified on the command line. // // Initializing The Codec // ---------------------- // The encoder is initialized by the following code. // // Encoding A Frame // ---------------- // The frame is read as a continuous block (size width * height * 3 / 2) // from the input file. If a frame was read (the input file has not hit // EOF) then the frame is passed to the encoder. Otherwise, a NULL // is passed, indicating the End-Of-Stream condition to the encoder. The // `frame_cnt` is reused as the presentation time stamp (PTS) and each // frame is shown for one frame-time in duration. The flags parameter is // unused in this example. The deadline is set to VPX_DL_REALTIME to // make the example run as quickly as possible. // Forced Keyframes // ---------------- // Keyframes can be forced by setting the VPX_EFLAG_FORCE_KF bit of the // flags passed to `vpx_codec_control()`. In this example, we force a // keyframe every frames. Note, the output stream can // contain additional keyframes beyond those that have been forced using the // VPX_EFLAG_FORCE_KF flag because of automatic keyframe placement by the // encoder. // // Processing The Encoded Data // --------------------------- // Each packet of type `VPX_CODEC_CX_FRAME_PKT` contains the encoded data // for this frame. We write a IVF frame header, followed by the raw data. // // Cleanup // ------- // The `vpx_codec_destroy` call frees any memory allocated by the codec. // // Error Handling // -------------- // This example does not special case any error return codes. If there was // an error, a descriptive message is printed and the program exits. With // few exeptions, vpx_codec functions return an enumerated error status, // with the value `0` indicating success. // // Error Resiliency Features // ------------------------- // Error resiliency is controlled by the g_error_resilient member of the // configuration structure. Use the `decode_with_drops` example to decode with // frames 5-10 dropped. Compare the output for a file encoded with this example // versus one encoded with the `simple_encoder` example. #include #include #include #include "enc.h" static const char *exec_name = "./enc"; void usage_exit(void) { fprintf(stderr, "Usage: %s " " \n" "See comments in simple_encoder.c for more information.\n", exec_name); exit(EXIT_FAILURE); } static VpxVideoWriter *writer; static VpxVideoWriter *open_writer(const char *file_name, uint32_t fourcc, int width, int height, int fps) { VpxVideoInfo info = { 0, 0, 0, { 0, 0 } }; info.codec_fourcc = fourcc; info.frame_width = width; info.frame_height = height; info.time_base.numerator = 1; info.time_base.denominator = fps; return vpx_video_writer_open(file_name, kContainerIVF, &info); } // TODO(dkovalev): move this function to vpx_image.{c, h}, so it will be part // of vpx_image_t support int vpx_img_plane_width(const vpx_image_t *img, int plane) { if (plane > 0 && img->x_chroma_shift > 0) return (img->d_w + 1) >> img->x_chroma_shift; else return img->d_w; } int vpx_img_plane_height(const vpx_image_t *img, int plane) { if (plane > 0 && img->y_chroma_shift > 0) return (img->d_h + 1) >> img->y_chroma_shift; else return img->d_h; } int vpx_img_read(vpx_image_t *img, void *img_buf, int sz) { int plane; for (plane = 0; plane < 3; ++plane) { unsigned char *buf = img->planes[plane]; const int stride = img->stride[plane]; const int w = vpx_img_plane_width(img, plane) * ((img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1); const int h = vpx_img_plane_height(img, plane); int y; for (y = 0; y < h; ++y) { memcpy(buf, img_buf, w); img_buf += w; buf += stride; } } return 1; } int vpx_encode_frame(vpx_codec_ctx_t *codec, vpx_image_t *img, int frame_index, int flags) { int got_pkts = 0; vpx_codec_iter_t iter = NULL; const vpx_codec_cx_pkt_t *pkt = NULL; const vpx_codec_err_t res = vpx_codec_encode(codec, img, frame_index, 1, flags, VPX_DL_REALTIME); if (res != VPX_CODEC_OK) die_codec(codec, "Failed to encode frame"); while ((pkt = vpx_codec_get_cx_data(codec, &iter)) != NULL) { got_pkts = 1; if (pkt->kind == VPX_CODEC_CX_FRAME_PKT) { const int keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY) != 0; if (!vpx_video_writer_write_frame(writer, pkt->data.frame.buf, pkt->data.frame.sz, pkt->data.frame.pts)) { die_codec(codec, "Failed to write compressed frame"); } printf(keyframe ? "K" : "."); fflush(stdout); } } return got_pkts; } void vpx_open(vpx_codec_ctx_t *codec, vpx_codec_iface_t *codec_interface, int width, int height, int fps, int bitrate, vpx_codec_er_flags_t err_resilient, vpx_image_t *raw) { vpx_codec_enc_cfg_t cfg; vpx_codec_err_t res; res = vpx_codec_enc_config_default(codec_interface, &cfg, 0); if (res) die("Failed to get default codec config."); cfg.g_w = width; cfg.g_h = height; cfg.g_timebase.num = 1; cfg.g_timebase.den = fps; cfg.rc_target_bitrate = bitrate; cfg.g_error_resilient = err_resilient; cfg.rc_end_usage = VPX_CBR; if (vpx_codec_enc_init(codec, codec_interface, &cfg, 0)) die_codec(codec, "Failed to initialize encoder"); if (vpx_codec_control(codec, VP8E_SET_CPUUSED, 8)) die_codec(codec, "Failed to initialize cpuused"); if (!vpx_img_alloc(raw, VPX_IMG_FMT_I420, width, height, 1)) { die("Failed to allocate image."); } } void vpx_close(vpx_codec_ctx_t *codec, vpx_image_t *raw) { // Flush encoder. while (vpx_encode_frame(codec, NULL, -1, 0)) { } vpx_img_free(raw); if (vpx_codec_destroy(codec)) die_codec(codec, "Failed to destroy codec."); vpx_video_writer_close(writer); } void vpx_init(const char *codec_arg, const char *outfile_arg, int width, int height, int fps) { const VpxInterface *encoder = get_vpx_encoder_by_name(codec_arg); if (!encoder) die("Unsupported codec."); writer = open_writer(outfile_arg, encoder->fourcc, width, height, fps); if (!writer) die("Failed to open %s for writing.", outfile_arg); printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface())); }