/* Copyright (C) 2004 Christopher Clark */ #include "hashtable.h" #include "hashtable_private.h" #include #include #include #include #define MAX_LOAD_FACTOR 0.65F /*****************************************************************************/ struct hashtable * hashtable_create(unsigned int minsize, unsigned int (*hashf) (void*), int (*eqf) (void*,void*)) { struct hashtable *h; struct entry **t; unsigned int size; size = hashtable_prime_size(minsize); if (0 == size) return NULL; h = (struct hashtable *)malloc(sizeof(struct hashtable)); if (NULL == h) return NULL; /*oom*/ t = (struct entry **)malloc(sizeof(struct entry*) * size); if (NULL == t) { free(h); return NULL; } /*oom*/ hashtable_create_static(h,t,size,hashf,eqf); return h; } /*****************************************************************************/ void hashtable_create_static(struct hashtable *h, struct entry **t, unsigned int size, unsigned int (*hashf) (void*), int (*eqf) (void*,void*)) { memset(t, 0, size * sizeof(struct entry *)); h->table = t; h->tablelength = size; h->entrycount = 0; h->hashfn = hashf; h->eqfn = eqf; h->loadlimit = (unsigned int) ceil(size * MAX_LOAD_FACTOR); } unsigned int hashtable_prime_size(unsigned int minsize) { /* Credit for primes table: Aaron Krowne http://br.endernet.org/~akrowne/ http://planetmath.org/encyclopedia/GoodHashTablePrimes.html */ const unsigned int primes[] = { 53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593, 49157, 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469, 12582917, 25165843, 50331653, 100663319, 201326611, 402653189, 805306457, 1610612741 }; const unsigned int prime_table_length = sizeof(primes)/sizeof(primes[0]); unsigned int pindex, size = 0; /* Check requested hashtable isn't too large */ if (minsize > (1u << 30)) return 0; /* Enforce size as prime */ for (pindex=0; pindex < prime_table_length; pindex++) { if (primes[pindex] >= minsize) { size = primes[pindex]; break; } } return size; } /*****************************************************************************/ /* key - return the key of the (key,value) pair from hash table entry */ /* value - return the value of the (key,value) pair from hash table entry */ void * hashtable_entry_key(struct entry *e) { return e->k; } void * hashtable_entry_value(struct entry *e) { return e->v; } /*****************************************************************************/ unsigned int hashtable_hash(struct hashtable *h, void *k) { return h->hashfn(k); } /*****************************************************************************/ static int hashtable_expand(struct hashtable *h) { /* Double the size of the table to accomodate more entries */ struct entry **newtable; struct entry *e; struct entry **pE; unsigned int newsize, i, index; newsize = hashtable_prime_size(h->tablelength + 1); /* Check we're not hitting max capacity */ if (0 == newsize) return 0; newtable = (struct entry **)malloc(sizeof(struct entry*) * newsize); if (NULL != newtable) { memset(newtable, 0, newsize * sizeof(struct entry *)); /* This algorithm is not 'stable'. ie. it reverses the list * when it transfers entries between the tables */ for (i = 0; i < h->tablelength; i++) { while (NULL != (e = h->table[i])) { h->table[i] = e->next; index = indexFor(newsize,e->h); e->next = newtable[index]; newtable[index] = e; } } free(h->table); h->table = newtable; } /* Plan B: realloc instead */ else { newtable = (struct entry **) realloc(h->table, newsize * sizeof(struct entry *)); if (NULL == newtable) return 0; h->table = newtable; memset(newtable[h->tablelength], 0, newsize - h->tablelength); for (i = 0; i < h->tablelength; i++) { for (pE = &(newtable[i]), e = *pE; e != NULL; e = *pE) { index = indexFor(newsize,e->h); if (index == i) { pE = &(e->next); } else { *pE = e->next; e->next = newtable[index]; newtable[index] = e; } } } } h->tablelength = newsize; h->loadlimit = (unsigned int) ceil(newsize * MAX_LOAD_FACTOR); return -1; } /*****************************************************************************/ unsigned int hashtable_count(struct hashtable *h) { return h->entrycount; } /*****************************************************************************/ int hashtable_insert(struct hashtable *h, void *k, void *v) { struct entry *e; if (++(h->entrycount) > h->loadlimit) { /* Ignore the return value. If expand fails, we should * still try cramming just this value into the existing table * -- we may not have memory for a larger table, but one more * element may be ok. Next time we insert, we'll try expanding again.*/ hashtable_expand(h); } e = (struct entry *)malloc(sizeof(struct entry)); if (NULL == e) { --(h->entrycount); return 0; } /*oom*/ hashtable_insert_static(h,e,k,v); return -1; } void hashtable_insert_static(struct hashtable *h, struct entry *e, void *k, void *v) { /* This method allows duplicate keys - but they shouldn't be used */ unsigned int index; e->h = hashtable_hash(h,k); index = indexFor(h->tablelength,e->h); e->k = k; e->v = v; e->next = h->table[index]; h->table[index] = e; } /*****************************************************************************/ void * /* returns value associated with key */ hashtable_search(struct hashtable *h, void *k) { struct entry *e; unsigned int hashvalue, index; hashvalue = hashtable_hash(h,k); index = indexFor(h->tablelength,hashvalue); e = h->table[index]; while (NULL != e) { /* Check hash value to short circuit heavier comparison */ if ((hashvalue == e->h) && (h->eqfn(k, e->k))) return e->v; e = e->next; } return NULL; } /*****************************************************************************/ void * /* returns value associated with key k after value v */ hashtable_search_next(struct hashtable *h, void *k, void *v) { struct entry *e; unsigned int hashvalue, index, f; hashvalue = hashtable_hash(h,k); index = indexFor(h->tablelength,hashvalue); f = 0; e = h->table[index]; while (NULL != e) { if (f) { /* Check hash value to short circuit heavier comparison */ if ((hashvalue == e->h) && (h->eqfn(k, e->k))) return e->v; } else if (v == e->v) { f = 1; } e = e->next; } return NULL; } /*****************************************************************************/ void * /* returns value associated with key */ hashtable_remove(struct hashtable *h, void *k) { /* TODO: consider compacting the table when the load factor drops enough, * or provide a 'compact' method. */ struct entry *e; void *v; e = hashtable_remove_static(h,k); if (NULL == e) return NULL; v = e->v; freekey(e->k); free(e); return v; } void * /* returns value associated with key */ hashtable_remove_kv(struct hashtable *h, void *k, void *v) { struct entry *e; e = hashtable_remove_kv_static(h,k,v); if (NULL == e) return NULL; freekey(e->k); free(e); return v; } struct entry * /* returns hash table entry associated with key */ hashtable_remove_static(struct hashtable *h, void *k) { struct entry *e; struct entry **pE; unsigned int hashvalue, index; hashvalue = hashtable_hash(h,k); index = indexFor(h->tablelength,hashvalue); pE = &(h->table[index]); e = *pE; while (NULL != e) { /* Check hash value to short circuit heavier comparison */ if ((hashvalue == e->h) && (h->eqfn(k, e->k))) { *pE = e->next; h->entrycount--; return e; } pE = &(e->next); e = e->next; } return NULL; } struct entry * /* returns hash table entry associated with key k and value v */ hashtable_remove_kv_static(struct hashtable *h, void *k, void *v) { struct entry *e; struct entry **pE; unsigned int hashvalue, index; hashvalue = hashtable_hash(h,k); index = indexFor(h->tablelength,hashvalue); pE = &(h->table[index]); e = *pE; while (NULL != e) { /* Check hash value to short circuit heavier comparison */ if ((hashvalue == e->h) && (h->eqfn(k, e->k)) && (v == e->v)) { *pE = e->next; h->entrycount--; return e; } pE = &(e->next); e = e->next; } return NULL; } /*****************************************************************************/ /* destroy */ void hashtable_destroy(struct hashtable *h, int free_values) { unsigned int i; struct entry *e, *f; struct entry **table = h->table; if (free_values) { for (i = 0; i < h->tablelength; i++) { e = table[i]; while (NULL != e) { f = e; e = e->next; freekey(f->k); free(f->v); free(f); } } } else { for (i = 0; i < h->tablelength; i++) { e = table[i]; while (NULL != e) { f = e; e = e->next; freekey(f->k); free(f); } } } free(h->table); free(h); } /* * Copyright (c) 2002, Christopher Clark * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of the original author; nor the names of any contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */