From a4401c99c2a54ba9a964317cbff915d40d16e470 Mon Sep 17 00:00:00 2001 From: Uros Majstorovic Date: Wed, 2 Feb 2022 06:30:38 +0100 Subject: moved aes sha and blowfish to crypto --- ext/aes/aes.c | 492 ---------------------------------------------------------- 1 file changed, 492 deletions(-) delete mode 100644 ext/aes/aes.c (limited to 'ext/aes/aes.c') diff --git a/ext/aes/aes.c b/ext/aes/aes.c deleted file mode 100644 index fc74d8d..0000000 --- a/ext/aes/aes.c +++ /dev/null @@ -1,492 +0,0 @@ -/* - -This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode. -Block size can be chosen in aes.h - available choices are AES128, AES192, AES256. - -The implementation is verified against the test vectors in: - National Institute of Standards and Technology Special Publication 800-38A 2001 ED - -ECB-AES128 ----------- - - plain-text: - 6bc1bee22e409f96e93d7e117393172a - ae2d8a571e03ac9c9eb76fac45af8e51 - 30c81c46a35ce411e5fbc1191a0a52ef - f69f2445df4f9b17ad2b417be66c3710 - - key: - 2b7e151628aed2a6abf7158809cf4f3c - - resulting cipher - 3ad77bb40d7a3660a89ecaf32466ef97 - f5d3d58503b9699de785895a96fdbaaf - 43b1cd7f598ece23881b00e3ed030688 - 7b0c785e27e8ad3f8223207104725dd4 - - -NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) - You should pad the end of the string with zeros if this is not the case. - For AES192/256 the key size is proportionally larger. - -*/ - - -/*****************************************************************************/ -/* Includes: */ -/*****************************************************************************/ -#include // CBC mode, for memset -#include "aes.h" - -/*****************************************************************************/ -/* Defines: */ -/*****************************************************************************/ -// The number of columns comprising a state in AES. This is a constant in AES. Value=4 -#define Nb 4 - -#if defined(AES256) && (AES256 == 1) - #define Nk 8 - #define Nr 14 -#elif defined(AES192) && (AES192 == 1) - #define Nk 6 - #define Nr 12 -#else - #define Nk 4 // The number of 32 bit words in a key. - #define Nr 10 // The number of rounds in AES Cipher. -#endif - -// jcallan@github points out that declaring Multiply as a function -// reduces code size considerably with the Keil ARM compiler. -// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3 -#ifndef MULTIPLY_AS_A_FUNCTION - #define MULTIPLY_AS_A_FUNCTION 0 -#endif - - - - -/*****************************************************************************/ -/* Private variables: */ -/*****************************************************************************/ -// state - array holding the intermediate results during decryption. -typedef uint8_t state_t[4][4]; - - - -// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM -// The numbers below can be computed dynamically trading ROM for RAM - -// This can be useful in (embedded) bootloader applications, where ROM is often limited. -static const uint8_t sbox[256] = { - //0 1 2 3 4 5 6 7 8 9 A B C D E F - 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, - 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, - 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, - 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, - 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, - 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, - 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, - 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, - 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, - 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, - 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, - 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, - 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, - 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, - 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, - 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; - -static const uint8_t rsbox[256] = { - 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, - 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, - 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, - 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, - 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, - 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, - 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, - 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, - 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, - 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, - 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, - 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, - 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, - 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, - 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, - 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; - -// The round constant word array, rcon[i], contains the values given by -// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) -static const uint8_t rcon[11] = { - 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; - -/* - * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12), - * that you can remove most of the elements in the rcon array, because they are unused. - * - * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#rcon - * - * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed), - * up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm." - */ - - -/*****************************************************************************/ -/* Private functions: */ -/*****************************************************************************/ -/* -static uint8_t getSBoxValue(uint8_t num) -{ - return sbox[num]; -} -*/ -#define getSBoxValue(num) (sbox[(num)]) - -// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. -static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key) -{ - unsigned i, j, k; - uint8_t tempa[4]; // Used for the column/row operations - - // The first round key is the key itself. - for (i = 0; i < Nk; ++i) - { - RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; - RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; - RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; - RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; - } - - // All other round keys are found from the previous round keys. - for (i = Nk; i < Nb * (Nr + 1); ++i) - { - { - k = (i - 1) * 4; - tempa[0]=RoundKey[k + 0]; - tempa[1]=RoundKey[k + 1]; - tempa[2]=RoundKey[k + 2]; - tempa[3]=RoundKey[k + 3]; - - } - - if (i % Nk == 0) - { - // This function shifts the 4 bytes in a word to the left once. - // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] - - // Function RotWord() - { - const uint8_t u8tmp = tempa[0]; - tempa[0] = tempa[1]; - tempa[1] = tempa[2]; - tempa[2] = tempa[3]; - tempa[3] = u8tmp; - } - - // SubWord() is a function that takes a four-byte input word and - // applies the S-box to each of the four bytes to produce an output word. - - // Function Subword() - { - tempa[0] = getSBoxValue(tempa[0]); - tempa[1] = getSBoxValue(tempa[1]); - tempa[2] = getSBoxValue(tempa[2]); - tempa[3] = getSBoxValue(tempa[3]); - } - - tempa[0] = tempa[0] ^ rcon[i/Nk]; - } -#if defined(AES256) && (AES256 == 1) - if (i % Nk == 4) - { - // Function Subword() - { - tempa[0] = getSBoxValue(tempa[0]); - tempa[1] = getSBoxValue(tempa[1]); - tempa[2] = getSBoxValue(tempa[2]); - tempa[3] = getSBoxValue(tempa[3]); - } - } -#endif - j = i * 4; k=(i - Nk) * 4; - RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0]; - RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1]; - RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2]; - RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3]; - } -} - -// This function adds the round key to state. -// The round key is added to the state by an XOR function. -static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey) -{ - uint8_t i,j; - for (i = 0; i < 4; ++i) - { - for (j = 0; j < 4; ++j) - { - (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j]; - } - } -} - -// The SubBytes Function Substitutes the values in the -// state matrix with values in an S-box. -static void SubBytes(state_t* state) -{ - uint8_t i, j; - for (i = 0; i < 4; ++i) - { - for (j = 0; j < 4; ++j) - { - (*state)[j][i] = getSBoxValue((*state)[j][i]); - } - } -} - -// The ShiftRows() function shifts the rows in the state to the left. -// Each row is shifted with different offset. -// Offset = Row number. So the first row is not shifted. -static void ShiftRows(state_t* state) -{ - uint8_t temp; - - // Rotate first row 1 columns to left - temp = (*state)[0][1]; - (*state)[0][1] = (*state)[1][1]; - (*state)[1][1] = (*state)[2][1]; - (*state)[2][1] = (*state)[3][1]; - (*state)[3][1] = temp; - - // Rotate second row 2 columns to left - temp = (*state)[0][2]; - (*state)[0][2] = (*state)[2][2]; - (*state)[2][2] = temp; - - temp = (*state)[1][2]; - (*state)[1][2] = (*state)[3][2]; - (*state)[3][2] = temp; - - // Rotate third row 3 columns to left - temp = (*state)[0][3]; - (*state)[0][3] = (*state)[3][3]; - (*state)[3][3] = (*state)[2][3]; - (*state)[2][3] = (*state)[1][3]; - (*state)[1][3] = temp; -} - -static uint8_t xtime(uint8_t x) -{ - return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); -} - -// MixColumns function mixes the columns of the state matrix -static void MixColumns(state_t* state) -{ - uint8_t i; - uint8_t Tmp, Tm, t; - for (i = 0; i < 4; ++i) - { - t = (*state)[i][0]; - Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; - Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ; - Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ; - Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ; - Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ; - } -} - -// Multiply is used to multiply numbers in the field GF(2^8) -// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary -// The compiler seems to be able to vectorize the operation better this way. -// See https://github.com/kokke/tiny-AES-c/pull/34 -#if MULTIPLY_AS_A_FUNCTION -static uint8_t Multiply(uint8_t x, uint8_t y) -{ - return (((y & 1) * x) ^ - ((y>>1 & 1) * xtime(x)) ^ - ((y>>2 & 1) * xtime(xtime(x))) ^ - ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ - ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */ - } -#else -#define Multiply(x, y) \ - ( ((y & 1) * x) ^ \ - ((y>>1 & 1) * xtime(x)) ^ \ - ((y>>2 & 1) * xtime(xtime(x))) ^ \ - ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ - ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ - -#endif - -/* -static uint8_t getSBoxInvert(uint8_t num) -{ - return rsbox[num]; -} -*/ -#define getSBoxInvert(num) (rsbox[(num)]) - -// MixColumns function mixes the columns of the state matrix. -// The method used to multiply may be difficult to understand for the inexperienced. -// Please use the references to gain more information. -static void InvMixColumns(state_t* state) -{ - int i; - uint8_t a, b, c, d; - for (i = 0; i < 4; ++i) - { - a = (*state)[i][0]; - b = (*state)[i][1]; - c = (*state)[i][2]; - d = (*state)[i][3]; - - (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); - (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); - (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); - (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); - } -} - - -// The SubBytes Function Substitutes the values in the -// state matrix with values in an S-box. -static void InvSubBytes(state_t* state) -{ - uint8_t i, j; - for (i = 0; i < 4; ++i) - { - for (j = 0; j < 4; ++j) - { - (*state)[j][i] = getSBoxInvert((*state)[j][i]); - } - } -} - -static void InvShiftRows(state_t* state) -{ - uint8_t temp; - - // Rotate first row 1 columns to right - temp = (*state)[3][1]; - (*state)[3][1] = (*state)[2][1]; - (*state)[2][1] = (*state)[1][1]; - (*state)[1][1] = (*state)[0][1]; - (*state)[0][1] = temp; - - // Rotate second row 2 columns to right - temp = (*state)[0][2]; - (*state)[0][2] = (*state)[2][2]; - (*state)[2][2] = temp; - - temp = (*state)[1][2]; - (*state)[1][2] = (*state)[3][2]; - (*state)[3][2] = temp; - - // Rotate third row 3 columns to right - temp = (*state)[0][3]; - (*state)[0][3] = (*state)[1][3]; - (*state)[1][3] = (*state)[2][3]; - (*state)[2][3] = (*state)[3][3]; - (*state)[3][3] = temp; -} - -// Cipher is the main function that encrypts the PlainText. -static void Cipher(state_t* state, const uint8_t* RoundKey) -{ - uint8_t round = 0; - - // Add the First round key to the state before starting the rounds. - AddRoundKey(0, state, RoundKey); - - // There will be Nr rounds. - // The first Nr-1 rounds are identical. - // These Nr rounds are executed in the loop below. - // Last one without MixColumns() - for (round = 1; ; ++round) - { - SubBytes(state); - ShiftRows(state); - if (round == Nr) { - break; - } - MixColumns(state); - AddRoundKey(round, state, RoundKey); - } - // Add round key to last round - AddRoundKey(Nr, state, RoundKey); -} - -static void InvCipher(state_t* state, const uint8_t* RoundKey) -{ - uint8_t round = 0; - - // Add the First round key to the state before starting the rounds. - AddRoundKey(Nr, state, RoundKey); - - // There will be Nr rounds. - // The first Nr-1 rounds are identical. - // These Nr rounds are executed in the loop below. - // Last one without InvMixColumn() - for (round = (Nr - 1); ; --round) - { - InvShiftRows(state); - InvSubBytes(state); - AddRoundKey(round, state, RoundKey); - if (round == 0) { - break; - } - InvMixColumns(state); - } - -} - -static void XorBlock(uint8_t* buf, const uint8_t* block) -{ - uint8_t i; - for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size - { - buf[i] ^= block[i]; - } -} - -/*****************************************************************************/ -/* Public functions: */ -/*****************************************************************************/ - -void aes_init(AESCtx *ctx, uint8_t *key) { - KeyExpansion(ctx->RoundKey, key); -} - -void aes_ecb_encrypt(AESCtx *ctx, uint8_t *buf) { - Cipher((state_t*)buf, ctx->RoundKey); -} - -void aes_ecb_decrypt(AESCtx *ctx, uint8_t *buf) { - InvCipher((state_t*)buf, ctx->RoundKey); -} - -void aes_cbc_encrypt(AESCtx *ctx, uint8_t *iv, uint8_t *buf, size_t length) { - size_t i; - uint8_t *block = iv; - - for (i = 0; i < length; i += AES_BLOCKLEN) { - XorBlock(buf, block); - Cipher((state_t*)buf, ctx->RoundKey); - block = buf; - buf += AES_BLOCKLEN; - } -} - -void aes_cbc_decrypt(AESCtx *ctx, uint8_t *iv, uint8_t *buf, size_t length) { - size_t i; - uint8_t block[AES_BLOCKLEN]; - uint8_t block_next[AES_BLOCKLEN]; - - memcpy(block, iv, AES_BLOCKLEN); - for (i = 0; i < length; i += AES_BLOCKLEN) { - memcpy(block_next, buf, AES_BLOCKLEN); - InvCipher((state_t*)buf, ctx->RoundKey); - XorBlock(buf, block); - memcpy(block, block_next, AES_BLOCKLEN); - buf += AES_BLOCKLEN; - } -} -- cgit v1.2.3