#include #include #include #include #include #include #include #include #include #include #include #include "eos.h" #include "net.h" #include "at_urc.h" #include "cell.h" #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y)) #define MAX(X, Y) (((X) > (Y)) ? (X) : (Y)) #define UART_SIZE_BUF 1024 #define UART_SIZE_URC_BUF 128 #define UART_GPIO_TXD 16 #define UART_GPIO_RXD 17 #define UART_GPIO_DTR 32 #define UART_GPIO_RI 35 static QueueHandle_t uart_queue; static QueueHandle_t uart_ri_queue; static const char *TAG = "EOS MODEM"; static SemaphoreHandle_t mutex; static char at_resp[128]; static char uart_buf[UART_SIZE_URC_BUF]; static unsigned int uart_buf_len; static uint8_t uart_mode = EOS_CELL_UART_MODE_NONE; static SemaphoreHandle_t uart_mutex; static char ppp_apn[64]; static char ppp_user[64]; static char ppp_pass[64]; static SemaphoreHandle_t ppp_mutex; static ppp_pcb *ppp_handle; static struct netif ppp_netif; typedef enum { UART_EEVT_MODE = UART_EVENT_MAX } uart_eevt_type_t; static void modem_atcmd_read(size_t bsize); static void uart_data_read(uint8_t mode) { unsigned char *buf; int rd; size_t bsize; uart_get_buffered_data_len(UART_NUM_2, &bsize); switch (mode) { case EOS_CELL_UART_MODE_ATCMD: modem_atcmd_read(bsize); break; case EOS_CELL_UART_MODE_PPP: rd = 0; do { int _rd = eos_modem_read(uart_buf, MIN(bsize - rd, sizeof(uart_buf)), 100); pppos_input_tcpip(ppp_handle, (uint8_t *)uart_buf, _rd); rd += _rd; } while (rd != bsize); break; case EOS_CELL_UART_MODE_RELAY: rd = 0; do { int _rd; buf = eos_net_alloc(); buf[0] = EOS_CELL_MTYPE_DATA; _rd = eos_modem_read(buf + 1, MIN(bsize - rd, EOS_NET_SIZE_BUF - 1), 100); eos_net_send(EOS_NET_MTYPE_CELL, buf, _rd + 1, 0); rd += _rd; } while (rd != bsize); break; default: break; } } static void uart_event_task(void *pvParameters) { char mode = EOS_CELL_UART_MODE_NONE; char _mode = EOS_CELL_UART_MODE_NONE; uart_event_t event; while (1) { /* Waiting for UART event. */ if (xQueueReceive(uart_queue, (void *)&event, (portTickType)portMAX_DELAY)) { switch (event.type) { case UART_DATA: /* Event of UART receiving data */ if (mode != EOS_CELL_UART_MODE_NONE) uart_data_read(mode); if ((mode != _mode) && (uart_buf_len == 0)) { if (_mode == EOS_CELL_UART_MODE_NONE) xSemaphoreGive(uart_mutex); mode = _mode; } break; case UART_EEVT_MODE: /* Mode change */ _mode = (char)event.size; if ((_mode != mode) && ((uart_buf_len == 0) || (mode == EOS_CELL_UART_MODE_NONE))) { if (mode == EOS_CELL_UART_MODE_NONE) { xSemaphoreTake(uart_mutex, portMAX_DELAY); uart_data_read(_mode); } if (_mode == EOS_CELL_UART_MODE_NONE) xSemaphoreGive(uart_mutex); mode = _mode; } break; default: break; } } } vTaskDelete(NULL); } static void uart_ri_event_task(void *pvParameters) { int level; while (1) { if (xQueueReceive(uart_ri_queue, (void *)&level, (portTickType)portMAX_DELAY) && (level == 0)) { uint64_t t_start = esp_timer_get_time(); if (xQueueReceive(uart_ri_queue, (void *)&level, 200 / portTICK_RATE_MS) && (level == 1)) { uint64_t t_end = esp_timer_get_time(); ESP_LOGI(TAG, "URC:%u", (uint32_t)(t_end - t_start)); } else { ESP_LOGI(TAG, "RING"); } } } vTaskDelete(NULL); } static void IRAM_ATTR uart_ri_isr_handler(void *arg) { int level = gpio_get_level(UART_GPIO_RI); xQueueSendFromISR(uart_ri_queue, &level, NULL); } static void modem_atcmd_read(size_t bsize) { char *ln_begin, *ln_end, *ln_next; int rd = 0; do { int _rd = eos_modem_read(uart_buf + uart_buf_len, MIN(bsize - rd, sizeof(uart_buf) - uart_buf_len - 1), 100); ln_next = uart_buf + uart_buf_len; ln_begin = uart_buf; uart_buf_len += _rd; rd += _rd; uart_buf[uart_buf_len] = '\0'; while ((ln_end = strchr(ln_next, '\n'))) { ln_end--; if ((ln_end > ln_begin) && (*ln_end == '\r')) { *ln_end = '\0'; at_urc_process(ln_begin); } ln_next = ln_end + 2; ln_begin = ln_next; } if (ln_begin != uart_buf) { uart_buf_len -= ln_begin - uart_buf; if (uart_buf_len) memmove(uart_buf, ln_begin, uart_buf_len); } else if (uart_buf_len == sizeof(uart_buf) - 1) { memcpy(uart_buf, uart_buf + sizeof(uart_buf) / 2, sizeof(uart_buf) / 2); uart_buf_len = sizeof(uart_buf) / 2; } } while (rd != bsize); } static void modem_set_mode(uint8_t mode) { uart_event_t evt; evt.type = UART_EEVT_MODE; evt.size = mode; xQueueSend(uart_queue, (void *)&evt, portMAX_DELAY); } static char *memstr(char *mem, size_t size, char *str) { size_t i = 0; char *max_mem; if (str[0] == '\0') return NULL; max_mem = mem + size; while (mem < max_mem) { if (*mem != str[i]) { mem -= i; i = 0; } else { if (str[i+1] == '\0') return mem - i; i++; } mem++; } return NULL; } static uint32_t ppp_output_cb(ppp_pcb *pcb, uint8_t *data, uint32_t len, void *ctx) { size_t rv; xSemaphoreTake(ppp_mutex, portMAX_DELAY); rv = eos_modem_write(data, len); xSemaphoreGive(ppp_mutex); return rv; } /* PPP status callback */ static void ppp_status_cb(ppp_pcb *pcb, int err_code, void *ctx) { // struct netif *pppif = ppp_netif(pcb); // LWIP_UNUSED_ARG(ctx); switch(err_code) { case PPPERR_NONE: { ESP_LOGE(TAG, "status_cb: Connect"); break; } case PPPERR_PARAM: { ESP_LOGE(TAG, "status_cb: Invalid parameter"); break; } case PPPERR_OPEN: { ESP_LOGE(TAG, "status_cb: Unable to open PPP session"); break; } case PPPERR_DEVICE: { ESP_LOGE(TAG, "status_cb: Invalid I/O device for PPP"); break; } case PPPERR_ALLOC: { ESP_LOGE(TAG, "status_cb: Unable to allocate resources"); break; } case PPPERR_USER: { ESP_LOGE(TAG, "status_cb: User interrupt"); break; } case PPPERR_CONNECT: { ESP_LOGE(TAG, "status_cb: Connection lost"); break; } case PPPERR_AUTHFAIL: { ESP_LOGE(TAG, "status_cb: Failed authentication challenge"); break; } case PPPERR_PROTOCOL: { ESP_LOGE(TAG, "status_cb: Failed to meet protocol"); break; } case PPPERR_PEERDEAD: { ESP_LOGE(TAG, "status_cb: Connection timeout"); break; } case PPPERR_IDLETIMEOUT: { ESP_LOGE(TAG, "status_cb: Idle Timeout"); break; } case PPPERR_CONNECTTIME: { ESP_LOGE(TAG, "status_cb: Max connect time reached"); break; } case PPPERR_LOOPBACK: { ESP_LOGE(TAG, "status_cb: Loopback detected"); break; } default: { ESP_LOGE(TAG, "status_cb: Unknown error code %d", err_code); break; } } } static int ppp_pause(void) { int done = 0; int len = 0; int ret = EOS_OK; char *ok_str = NULL; uint64_t t_start; uint32_t timeout = 500; uint8_t retries = 1; xSemaphoreTake(ppp_mutex, portMAX_DELAY); eos_modem_flush(); vTaskDelay(1000 / portTICK_PERIOD_MS); modem_set_mode(EOS_CELL_UART_MODE_NONE); xSemaphoreTake(uart_mutex, portMAX_DELAY); eos_modem_write("+++", 3); t_start = esp_timer_get_time(); do { len = eos_modem_read(uart_buf + uart_buf_len, sizeof(uart_buf) - uart_buf_len, 10); if (len > 0) { if (uart_buf_len > 5) { ok_str = memstr(uart_buf + uart_buf_len - 5, len + 5, "\r\nOK\r\n"); } else { ok_str = memstr(uart_buf, len + uart_buf_len, "\r\nOK\r\n"); } uart_buf_len += len; } if (ok_str) { pppos_input_tcpip(ppp_handle, (uint8_t *)uart_buf, ok_str - uart_buf); ok_str += 6; uart_buf_len -= ok_str - uart_buf; if (uart_buf_len) memmove(uart_buf, ok_str, uart_buf_len); done = 1; } else if (uart_buf_len == sizeof(uart_buf)) { pppos_input_tcpip(ppp_handle, (uint8_t *)uart_buf, sizeof(uart_buf) / 2); memcpy(uart_buf, uart_buf + sizeof(uart_buf) / 2, sizeof(uart_buf) / 2); uart_buf_len = sizeof(uart_buf) / 2; } if (timeout && !done && ((uint32_t)((esp_timer_get_time() - t_start) / 1000) > timeout)) { if (!retries) { ret = EOS_ERR_TIMEOUT; done = 1; modem_set_mode(EOS_CELL_UART_MODE_PPP); xSemaphoreGive(uart_mutex); xSemaphoreGive(ppp_mutex); } else { retries--; eos_modem_write("+++", 3); t_start = esp_timer_get_time(); } } } while (!done); return ret; } static int ppp_resume(void) { int r; int rv = EOS_OK; eos_modem_write("ATO\r", 4); r = eos_modem_resp("^CONNECT", "^(ERROR|NO CARRIER)", 1000); if (r <= 0) rv = EOS_ERR; modem_set_mode(EOS_CELL_UART_MODE_PPP); xSemaphoreGive(uart_mutex); xSemaphoreGive(ppp_mutex); return rv; } static int ppp_setup(void) { int r; char cmd[64]; int cmd_len = snprintf(cmd, sizeof(cmd), "AT+CGDCONT=1,\"IP\",\"%s\"\r", ppp_apn); if ((cmd_len < 0) || (cmd_len >= sizeof(cmd))) return EOS_ERR; modem_set_mode(EOS_CELL_UART_MODE_NONE); xSemaphoreTake(uart_mutex, portMAX_DELAY); eos_modem_write(cmd, cmd_len); r = eos_modem_resp("^OK", "^ERROR", 1000); if (r <= 0) { modem_set_mode(uart_mode); xSemaphoreGive(uart_mutex); return EOS_ERR; } eos_modem_write("AT+CGDATA=\"PPP\",1\r", 18); r = eos_modem_resp("^CONNECT", "^(ERROR|\\+CME ERROR|NO CARRIER)", 1000); if (r <= 0) { modem_set_mode(uart_mode); xSemaphoreGive(uart_mutex); return EOS_ERR; } ppp_handle = pppapi_pppos_create(&ppp_netif, ppp_output_cb, ppp_status_cb, NULL); ppp_set_usepeerdns(ppp_handle, 1); pppapi_set_default(ppp_handle); pppapi_set_auth(ppp_handle, PPPAUTHTYPE_PAP, ppp_user, ppp_pass); pppapi_connect(ppp_handle, 0); modem_set_mode(EOS_CELL_UART_MODE_PPP); xSemaphoreGive(uart_mutex); return EOS_OK; } static int ppp_disconnect(void) { int rv; pppapi_close(ppp_handle, 0); rv = ppp_pause(); if (rv) return rv; eos_modem_write("ATH\r", 4); eos_modem_resp("^OK", NULL, 1000); xSemaphoreGive(uart_mutex); xSemaphoreGive(ppp_mutex); ppp_handle = NULL; return EOS_OK; } void eos_modem_init(void) { /* Configure parameters of an UART driver, * communication pins and install the driver */ uart_config_t uart_config = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE }; uart_param_config(UART_NUM_2, &uart_config); uart_set_pin(UART_NUM_2, UART_GPIO_TXD, UART_GPIO_RXD, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE); uart_driver_install(UART_NUM_2, UART_SIZE_BUF, UART_SIZE_BUF, 10, &uart_queue, 0); // Configuration for the DTR/RI lines gpio_config_t io_conf; io_conf.intr_type = GPIO_INTR_DISABLE; io_conf.mode = GPIO_MODE_OUTPUT; io_conf.pin_bit_mask = ((uint64_t)1 << UART_GPIO_DTR); io_conf.pull_up_en = 0; io_conf.pull_down_en = 0; gpio_config(&io_conf); gpio_set_level(UART_GPIO_DTR, 1); io_conf.intr_type = GPIO_PIN_INTR_ANYEDGE; io_conf.mode = GPIO_MODE_INPUT; io_conf.pin_bit_mask = ((uint64_t)1 << UART_GPIO_RI); io_conf.pull_up_en = 0; io_conf.pull_down_en = 0; gpio_config(&io_conf); mutex = xSemaphoreCreateBinary(); xSemaphoreGive(mutex); uart_mutex = xSemaphoreCreateBinary(); xSemaphoreGive(uart_mutex); ppp_mutex = xSemaphoreCreateBinary(); xSemaphoreGive(ppp_mutex); uart_ri_queue = xQueueCreate(4, sizeof(int)); // Create a task to handle uart event from ISR xTaskCreate(uart_event_task, "uart_event", EOS_TASK_SSIZE_UART, NULL, EOS_TASK_PRIORITY_UART, NULL); xTaskCreate(uart_ri_event_task, "uart_ri_event", EOS_TASK_SSIZE_UART_RI, NULL, EOS_TASK_PRIORITY_UART_RI, NULL); gpio_isr_handler_add(UART_GPIO_RI, uart_ri_isr_handler, NULL); ESP_LOGI(TAG, "INIT"); } void eos_modem_flush(void){ uart_wait_tx_done(UART_NUM_2, portMAX_DELAY); } size_t eos_modem_write(void *data, size_t size) { return uart_write_bytes(UART_NUM_2, (const char *)data, size); } size_t eos_modem_read(void *data, size_t size, uint32_t timeout) { return uart_read_bytes(UART_NUM_2, (uint8_t *)data, size, timeout / portTICK_RATE_MS); } int eos_modem_readln(char *buf, size_t buf_size, uint32_t timeout) { int done = 0; int len = 0; int ret = EOS_OK; char *ln_end = NULL; uint64_t t_start = esp_timer_get_time(); ln_end = strchr(uart_buf, '\n'); do { if (ln_end == NULL) { len = eos_modem_read(uart_buf + uart_buf_len, sizeof(uart_buf) - uart_buf_len - 1, 10); if (len > 0) { uart_buf[uart_buf_len + len] = '\0'; ln_end = strchr(uart_buf + uart_buf_len, '\n'); uart_buf_len += len; } } if (ln_end) { ln_end--; if ((ln_end >= uart_buf) && (*ln_end == '\r')) { if (buf_size > ln_end - uart_buf) { memcpy(buf, uart_buf, ln_end - uart_buf); buf[ln_end - uart_buf] = '\0'; ret = EOS_OK; } else { ret = EOS_ERR; } done = 1; } ln_end += 2; uart_buf_len -= ln_end - uart_buf; if (uart_buf_len) memmove(uart_buf, ln_end, uart_buf_len); ln_end = NULL; } else if (uart_buf_len == sizeof(uart_buf) - 1) { memcpy(uart_buf, uart_buf + sizeof(uart_buf) / 2, sizeof(uart_buf) / 2); uart_buf_len = sizeof(uart_buf) / 2; } if (timeout && !done && ((uint32_t)((esp_timer_get_time() - t_start) / 1000) > timeout)) { ret = EOS_ERR_TIMEOUT; done = 1; } } while (!done); return ret; } int eos_modem_resp(char *ok_str, char *err_str, uint32_t timeout) { int rv; regex_t re; uint32_t e = 0; uint64_t t_start = esp_timer_get_time(); do { rv = eos_modem_readln(at_resp, sizeof(at_resp), timeout - e); if (rv) return EOS_ERR; if (ok_str) { rv = regcomp(&re, ok_str, REG_EXTENDED | REG_NOSUB); if (rv) return EOS_ERR; if (regexec(&re, at_resp, 0, NULL, 0) == 0) return 1; } if (err_str) { rv = regcomp(&re, err_str, REG_EXTENDED | REG_NOSUB); if (rv) return EOS_ERR; if (regexec(&re, at_resp, 0, NULL, 0) == 0) return 0; } at_urc_process(at_resp); e = (uint32_t)(esp_timer_get_time() - t_start) / 1000; if (e >= timeout) return EOS_ERR; } while (1); } uint8_t eos_modem_get_mode(void) { uint8_t ret; xSemaphoreTake(mutex, portMAX_DELAY); ret = uart_mode; xSemaphoreGive(mutex); return ret; } int eos_modem_set_mode(uint8_t mode) { int rv = EOS_OK; xSemaphoreTake(mutex, portMAX_DELAY); if (mode != uart_mode) { if (uart_mode == EOS_CELL_UART_MODE_PPP) rv = ppp_disconnect(); if (!rv) { if (mode == EOS_CELL_UART_MODE_PPP) { rv = ppp_setup(); } else { modem_set_mode(mode); } if (!rv) uart_mode = mode; } } xSemaphoreGive(mutex); return rv; } int eos_modem_take(void) { int rv = EOS_OK; xSemaphoreTake(mutex, portMAX_DELAY); if (uart_mode == EOS_CELL_UART_MODE_PPP) { rv = ppp_pause(); } else { modem_set_mode(EOS_CELL_UART_MODE_NONE); xSemaphoreTake(uart_mutex, portMAX_DELAY); } return rv; } void eos_modem_give(void) { if (uart_mode == EOS_CELL_UART_MODE_PPP) { ppp_resume(); } else { modem_set_mode(uart_mode); xSemaphoreGive(uart_mutex); } xSemaphoreGive(mutex); }