1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
/*
* Copyright (c) 1996, David Mazieres <dm@uun.org>
* Copyright (c) 2008, Damien Miller <djm@openbsd.org>
* Copyright (c) 2013, Markus Friedl <markus@openbsd.org>
* Copyright (c) 2014, Theo de Raadt <deraadt@openbsd.org>
* Copyright (c) 2015, Sudhi Herle <sudhi@herle.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* ChaCha based random number generator from OpenBSD.
*
* Made fully portable and thread-safe by Sudhi Herle.
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <assert.h>
#define ARC4R_KEYSZ 32
#define ARC4R_IVSZ 8
#define ARC4R_BLOCKSZ 64
#define ARC4R_RSBUFSZ (16*ARC4R_BLOCKSZ)
typedef struct
{
uint32_t input[16]; /* could be compressed */
} chacha_ctx;
struct rand_state
{
size_t rs_have; /* valid bytes at end of rs_buf */
size_t rs_count; /* bytes till reseed */
chacha_ctx rs_chacha; /* chacha context for random keystream */
u_char rs_buf[ARC4R_RSBUFSZ]; /* keystream blocks */
};
typedef struct rand_state rand_state;
/* kernel entropy */
static int (*getentropy) (void* buf, size_t n);
#define KEYSTREAM_ONLY
#include "chacha_private.h"
#define minimum(a, b) ((a) < (b) ? (a) : (b))
#include "arc4random.h"
static inline void
_rs_init(rand_state* st, u8 *buf, size_t n)
{
assert(n >= (ARC4R_KEYSZ + ARC4R_IVSZ));
chacha_keysetup(&st->rs_chacha, buf, ARC4R_KEYSZ * 8, 0);
chacha_ivsetup(&st->rs_chacha, buf + ARC4R_KEYSZ);
}
static inline void
_rs_rekey(rand_state* st, u8 *dat, size_t datlen)
{
/* fill rs_buf with the keystream */
chacha_encrypt_bytes(&st->rs_chacha, st->rs_buf, st->rs_buf, sizeof st->rs_buf);
/* mix in optional user provided data */
if (dat) {
size_t i, m;
m = minimum(datlen, ARC4R_KEYSZ + ARC4R_IVSZ);
for (i = 0; i < m; i++)
st->rs_buf[i] ^= dat[i];
memset(dat, 0, datlen);
}
/* immediately reinit for backtracking resistance */
_rs_init(st, st->rs_buf, ARC4R_KEYSZ + ARC4R_IVSZ);
memset(st->rs_buf, 0, ARC4R_KEYSZ + ARC4R_IVSZ);
st->rs_have = (sizeof st->rs_buf) - ARC4R_KEYSZ - ARC4R_IVSZ;
}
static void
_rs_stir(rand_state* st)
{
u8 rnd[ARC4R_KEYSZ + ARC4R_IVSZ];
int r = getentropy(rnd, sizeof rnd);
assert(r == 0);
_rs_rekey(st, rnd, sizeof(rnd));
/* invalidate rs_buf */
st->rs_have = 0;
memset(st->rs_buf, 0, sizeof st->rs_buf);
st->rs_count = 1600000;
}
static inline void
_rs_stir_if_needed(rand_state* st, size_t len)
{
if (st->rs_count <= len)
_rs_stir(st);
st->rs_count -= len;
}
static inline void
_rs_random_buf(rand_state* rs, void *_buf, size_t n)
{
u8 *buf = (u8 *)_buf;
u8 *keystream;
size_t m;
_rs_stir_if_needed(rs, n);
while (n > 0) {
if (rs->rs_have > 0) {
m = minimum(n, rs->rs_have);
keystream = rs->rs_buf + sizeof(rs->rs_buf) - rs->rs_have;
memcpy(buf, keystream, m);
memset(keystream, 0, m);
buf += m;
n -= m;
rs->rs_have -= m;
} else
_rs_rekey(rs, NULL, 0);
}
}
static inline uint32_t
_rs_random_u32(rand_state* rs)
{
u8 *keystream;
uint32_t val;
_rs_stir_if_needed(rs, sizeof(val));
if (rs->rs_have < sizeof(val))
_rs_rekey(rs, NULL, 0);
keystream = rs->rs_buf + sizeof(rs->rs_buf) - rs->rs_have;
memcpy(&val, keystream, sizeof(val));
memset(keystream, 0, sizeof(val));
rs->rs_have -= sizeof(val);
return val;
}
/*
* Use gcc extension to declare a thread-local variable.
*
* On most systems (including x86_64), thread-local access is
* essentially free for non .so use cases.
*
*/
static rand_state st = { .rs_count = 0 };
static inline rand_state*
sget()
{
rand_state* s = &st;
if (s->rs_count == 0)
_rs_stir(s);
return s;
}
/*
* Public API.
*/
void
arc4random_init(int (*f) (void*, size_t))
{
getentropy = f;
}
uint32_t
arc4random()
{
rand_state* z = sget();
return _rs_random_u32(z);
}
void
arc4random_buf(void* b, size_t n)
{
rand_state* z = sget();
_rs_random_buf(z, b, n);
}
/*
* Calculate a uniformly distributed random number less than upper_bound
* avoiding "modulo bias".
*
* Uniformity is achieved by generating new random numbers until the one
* returned is outside the range [0, 2**32 % upper_bound). This
* guarantees the selected random number will be inside
* [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound)
* after reduction modulo upper_bound.
*/
uint32_t
arc4random_uniform(uint32_t upper_bound)
{
rand_state* z = sget();
uint32_t r, min;
if (upper_bound < 2)
return 0;
/* 2**32 % x == (2**32 - x) % x */
min = -upper_bound % upper_bound;
/*
* This could theoretically loop forever but each retry has
* p > 0.5 (worst case, usually far better) of selecting a
* number inside the range we need, so it should rarely need
* to re-roll.
*/
for (;;) {
r = _rs_random_u32(z);
if (r >= min)
break;
}
return r % upper_bound;
}
/* EOF */
|